New Spin on an Old Fiber

نویسنده

  • Lance Frazer
چکیده

T o restore skeleton function in the fi eld of orthopaedic and oral-maxillofacial surgery, bone tissue regeneration remains an important challenge. Spinal fusion, augmentation of fracture healing, and reconstruction of bone defects resulting from trauma, tumour, infections, biochemical disorders, or abnormal skeletal development are clinical situations in which surgical intervention is required. The types of graft materials available to treat such problems essentially include autologous bone (from the patient), allogeneic bone (from a donor), and demineralised bone matrices, as well as a wide range of synthetic biomaterials such as metals, ceramics, polymers, and composites. Until recently, the use of autologous bone grafts has been the number one choice for bone repair and regeneration [1–5]. A patient's own bone lacks immunogenicity and provides bone-forming cells, which are directly delivered at the implant site. Moreover, autologous bone grafts recruit mesenchymal cells and induce them to differentiate into osteogenic cells through exposure to osteoinductive growth factors [1,3,6,7]. Although there are many advantages to using autologous bone, there are major drawbacks to the harvesting procedure, and for centuries there has been a search for alternatives. The extra surgery involved in harvesting autologous bone causes morbidity at the donor site [1,3,6,8] and can cause post-operative continuous pain [3,9–11], hypersensitivity [3], pelvic instability [10–12], infection [6,9], and paresthesia [3,6]. These complications affect 10% to 30% of the patients [9]. Moreover, the amount of bone that can be collected is limited. As an alternative, the use of allografts (from human to human) eliminates the harvesting procedure and the quantity of available tissue is no longer an issue. Nevertheless, the quality of allografts is worse than that of autologous grafts. Allografts have a poor degree of cellularity, less revascularisation, and a higher resorption rate compared to autologous grafts [3,6], resulting in a slower rate of new bone tissue formation, as observed in several studies [11,13–15]. In addition, the immunogenic potential of these allografts and the risks of virus transmission to the recipient are serious disadvantages [2,14,16]. Although processing techniques such as demineralisation, freeze-drying, and irradiation have been shown to reduce the patient's immune response, processing also alters the structure of the graft and reduces its potential to induce bone healing (osteoinductivity), while the possibility of disease transmission still remains [3]. To overcome the drawbacks of the current bone graft materials, bone tissue engineering (BTE) using bone marrow stem cells has been suggested as a promising technique for reconstructing …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation into the Deep Drawing of Fiber-Metal Laminates based on Glass Fiber Reinforced Polypropylene

Abstract   Fiber-metal laminates (FMLs) are new type of composite materials which could improve defects of traditional composites in ductility, formability, impact and damage tolerance. Drawing behavior of a thermoplastic based FML was investigated consisting of glass-fiber reinforced polypropylene composite laminate and aluminum AA1200-O as the core and skin layers, respectively. The effects o...

متن کامل

Optoelectronic Quantum Telecommunications Based on Spins in Semiconductors

The transmission of quantum information over long distances will allow new forms of data security, based on quantum cryptography. These new technologies rely for security on the quantum “uncertainty principle” and on the long distance transmission of “quantum entanglement.” A new type of telecommunications device called the “quantum repeater” can allow the faithful transmission of quantum infor...

متن کامل

Studying the process of transformation of the start-up to the academic spin off

At todaychr('39')s universities, we are witnessing the emergence of startup companies by the startup teams by student and academic teams; unfortunately, most startups face barriers to success. On the one hand, one of the new topics entering the fourth-generation universities and can be a good target for the future of the startups; the existence of academic spin-offs, centered around scholars...

متن کامل

Fiber reinforced plastic composites using recycled materials

This work investigates the feasibility of using recycled high density polyethylene (rHDPE), recycled polypropylene (rPP) and old newsprint fiber (ONP) to manufacture fiber reinforced composites. The boards were made through air-forming and hot press. The effects of the fiber loading and coupling agent content on tensile, flexural, internal bond properties and water absorption and thickness swel...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

Electron spin manipulation and readout through an optical fiber

The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from quantum information to neuroscience and bioimaging. Here, we demonstrate an ultracompact fiber-optic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2004